I am currently experimenting with the performance of OpenCL code using the GPU and using C++ on the CPU. I have written programs that compute the sum z = x + y, where z, x,and y are two dimensional arrays (matrices) for the GPU and the CPU. After testing these programs, I have found that the CPU is much more efficient at computing this sum than the GPU due to the slow transfer of data in the PCI bus between the GPU and the CPU. Now I want to determine how many more sums will be required in order to make using the GPU more efficient than the CPU. I plan to do this by increasing the sum z = x + y to z = x + y + y + y + y + ... and so on.
Will it be possible to make using the GPU more efficient than the CPU just by increasing the number of sums for this specific problem?
Just as an FYI: I am using a nVIDIA GeForce GT 640 graphics card and an i5 Intel core CPU.
Any help will be greatly appreciated.
EDIT:
Below I have attached my code on the CPU:
int main(int argc, const char * argv[])
{
//This value determines the size of the nxn (square array)
int n = 1000;
//Allocating the memory for the nxn arrays of floats.
float **x = (float**)malloc(sizeof(float*)*n);
float **y = (float**)malloc(sizeof(float*)*n);
float **z = (float**)malloc(sizeof(float*)*n);
//Initializing the arrays.
for(int i = 0; i<n; i++){
x[i] = (float*)malloc(sizeof(float)*n);
y[i] = (float*)malloc(sizeof(float)*n);
z[i] = (float*)malloc(sizeof(float)*n);
for(int j = 0; j<n; j++){
x[i][j] = i+j;
y[i][j] = i+j;
}
}
for(int i = 0; i<n; i++){
for(int j = 0; j<n; j++){
z[i][j] = x[i][j] + y[i][j];
for(int k = 0; k < 100; k++){
z[i][j] += y[i][j];
}
}
}
return 0;
}
And here is the C++ using OpenCL: (used to copy the data and execute the kernel on the GPU)
int n = 1000;
for(int i = 0; i<n; i++)
{
//Writing the data from the host to the device
err = clEnqueueWriteBuffer(queue, d_xx, CL_TRUE, 0, sizeof(float)*n, h_xx[i], 0, NULL, NULL);
if(err != CL_SUCCESS){
std::cout << "Error: Could not write to buffer d_xx" << std::endl;
exit(1);
}
err = clEnqueueWriteBuffer(queue, d_yy, CL_TRUE, 0, sizeof(float)*n, h_yy[i], 0, NULL, NULL);
if(err != CL_SUCCESS){
std::cout << "Error: Could not write to buffer d_yy" << std::endl;
exit(1);
}
//Setting the Kernel Arguments
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_xx);
if(err != CL_SUCCESS){
std::cout << "Error: Could not set kernel argument h_xx." << std::endl;
exit(1);
}
err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_yy);
if(err != CL_SUCCESS){
std::cout << "Error: Could not set kernel argument h_yy." << std::endl;
exit(1);
}
err = clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_zz);
if(err != CL_SUCCESS){
std::cout << "Error: Could not set kernel argument h_zz." << std::endl;
}
work_units_per_kernel = n;
//Executing the Kernel
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &work_units_per_kernel, NULL, 0, NULL, NULL);
if(err != CL_SUCCESS){
std::cout << "Error: Could not execute kernel." << std::endl;
exit(1);
}
//Reading the Data from the Kernel
err = clEnqueueReadBuffer(queue, d_zz, CL_TRUE, 0, n*(sizeof(float)), h_zz[i], 0, NULL, NULL);
if(err != CL_SUCCESS){
std::cout << "Error: Could not read data from kernel." << std::endl;
exit(1);
}
}
And lastly the kernel code executed on the GPU:
__kernel void arraysum(__global const float *d_aa, __global const float *d_bb, __global float *d_cc)
{
int i = get_global_id(0);
d_cc[i] = d_aa[i] + d_bb[i];
for(int j = 0; j < 100; j++){
d_cc[i] += d_bb[i];
}
}