Closures are not always called immediately. They are objects which can be stored and called later when the data necessary to successfully execute the lambda function may no longer be in scope or easily accessible from the call site.
It's possible to to store any necessary data along with the closure but it's so much simpler for the closure to grab anything it needs when it's created and use it when it's eventually called. It provides a form of encapsulation.
This also decreases code coupling because if you were to store the data along with the code then the caller could only work with the specific objects you decided to store. Since a closure carries its own data along with it, it can work with any data it needs.
Here's an greatly oversimplified real-life example. I built a database server which needed to support fields with multiple values. The problem was that when results were displayed, it was important to highlight which values actually caused a record to match the search criteria. So, the query parser would spit out a predicate in the form of a closure which would indicate whether or not it was a matching value.
It looked something like this:
std::function< bool(int value) > parser::match_int(int search_val) {
return [=](int value) { value == search_val; };
}
That closure got stored in a collection. When it was time to render the record, I could easily determine which values needed to be highlighted. Keep in mind that the parser and any associated data is now gone:
void render_values(std::function< bool(int value) > pred, std::vector<int> values) {
for (int value : values) {
if (pred(value))
render_highlight(value);
else
render_normal(value);
}
}
std::generateexpects something that takes no parameter;std::find_ifexpects something that takes one, etc.).