I've been running into an infrequent but re-occurring race condition. The program has two threads and uses std::atomic. I'll simplify the critical parts of the code to look like:
std::atomic<uint64_t> b; // flag, initialized to 0
uint64_t data[100]; // shared data, initialized to 0
thread 1 (publishing):
// set various shared variables here, for example
data[5] = 10;
uint64_t a = b.exchange(1); // signal to thread 2 that data is ready
thread 2 (receiving):
if (b.load() != 0) { // signal that data is ready
// read various shared variables here, for example:
uint64_t x = data[5];
// race condition sometimes (x sometimes not consistent)
}
The odd thing is that when I add __sync_synchronize() to each thread, then the race condition goes away. I've seen this happen on two different servers.
i.e. when I change the code to look like the following, then the problem goes away:
thread 1 (publishing):
// set various shared variables here, for example
data[5] = 10;
__sync_synchronize();
uint64_t a = b.exchange(1); // signal to thread 2 that data is ready
thread 2 (receiving):
if (b.load() != 0) { // signal that data is ready
__sync_synchronize();
// read various shared variables here, for example:
uint64_t x = data[5];
}
Why is __sync_synchronize() necessary? It seems redundant as I thought both exchange and load ensured the correct sequential ordering of logic.
Architecture is x86_64 processors, linux, g++ 4.6.2
std::atomicalready makes memory model guarantees, and shouldn't require any additional synchronization. So if you're still observing Race Conditions, that probably means there's a problem with how you've ordered the other code with respect to these synchronization points.