I've got an assignment regarding dynamic programming. I'm to design an efficient algorithm that does the following: There is a path, covered in spots. The user can move forward to the end of the path using a series of push buttons. There are 3 buttons. One moves you forward 2 spots, one moves you forward 3 spots, one moves you forward 5 spots. The spots on the path are either black or white, and you cannot land on a black spot. The algorithm finds the smallest number of button pushes needed to reach the end (past the last spot, can overshoot it). The user inputs are for "n", the number of spots. And fill the array with n amount of B or W (Black or white). The first spot must be white. Heres what I have so far (Its only meant to be pseudo):
int x = 0
int totalsteps = 0
n = user input
int countAtIndex[n-1] <- Set all values to -1 // I'll do the nitty gritty stuff like this after
int spots[n-1] = user input
pressButton(totalSteps, x) {
if(countAtIndex[x] != -1 AND totalsteps >= countAtIndex[x]) {
FAILED } //Test to see if the value has already been modified (not -1 or not better)
else
if (spots[x] = "B") {
countAtIndex[x] = -2 // Indicator of invalid spot
FAILED }
else if (x >= n-5) { // Reached within 5 of the end, press 5 so take a step and win
GIVE VALUE OF TOTALSTEPS + 1 A SUCCESSFUL SHORTEST OUTPUT
FINISH }
else
countAtIndex[x] = totalsteps
pressButton(totalsteps + 1, x+5) //take 5 steps
pressButton(totalsteps + 1, x+3) //take 3 steps
pressButton(totalsteps + 1, x+2) //take 2 steps
}
I appreciate this may look quite bad but I hope it comes across okay, I just want to make sure the theory is sound before I write it out better. I'm wondering if this is not the most efficient way of doing this problem. In addition to this, where there are capitals, I'm unsure on how to "Fail" the program, or how to return the "Successful" value. Any help would be greatly appreciated.
I should add incase its unclear, I'm using countAtIndex[] to store the number of moves to get to that index in the path. I.e at position 3 (countAtIndex[2]) could have a value 1, meaning its taken 1 move to get there.
countAtIndex[x]) seems to be absent from your code. As a side note, you seem to have chosen a recursive top-down approach, where my intuition says that a bottom-up iterative solution would be less code.