I look for an efficient way to get a row-wise intersection of two two-dimensional numpy ndarrays. There is only one intersection per row. For example:
[[1, 2], ∩ [[0, 1], -> [1,
[3, 4]] [0, 3]] 3]
In the best case zeros should be ignored:
[[1, 2, 0], ∩ [[0, 1, 0], -> [1,
[3, 4, 0]] [0, 3, 0]] 3]
My solution:
import numpy as np
arr1 = np.array([[1, 2],
[3, 4]])
arr2 = np.array([[0, 1],
[0, 3]])
arr3 = np.empty(len(arr1))
for i in range(len(arr1)):
arr3[i] = np.intersect1d(arr1[i], arr2[i])
print(arr3)
# [ 1. 3.]
I have about 1 million rows, so the vectorized operations are most preferred. You are welcome to use other python packages.
pandasandscipytags aren't relevant here.np.intersect1d(arr1.transpose(),arr2.transpose()).transpose()forloop so it's executed line by line. I accept solution which usescipyandpandaspackages as well. Try to read documentation for theintersect1dfunction. It is a coincidence that you get the same result. Try these arrays[[1,2],[3,4]]and[[3,4],[1,2]].