I am working with an image with distorted/rotated texts. I need to rotate these text blobs back to the horizontal level (0 degrees) before I can run OCR on them. I managed to fix the rotation issue but now I need to find a way to copy the contents of the original contour to the rotated matrix.
Here are a few things I've done to extract and fix the rotation issue:
- Find contour
- Heavy dilation and remove non-text lines
- Find the contour angle and do angle correction in the polar space.
I have tried using affine transformation to rotate the rectangle text blobs but it ended up cropping out some of the texts because some of the text blobs are irregular. Result here
Blue dots in the contours are centroids, the numbers are contour angles. How can I copy the content of unrotated contour, rotate them and copy to a new image?

Code
def getContourCenter(contour):
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
else:
return 0, 0
return int(cx), int(cy)
def rotateContour(contour, center: tuple, angle: float):
def cart2pol(x, y):
theta = np.arctan2(y, x)
rho = np.hypot(x, y)
return theta, rho
def pol2cart(theta, rho):
x = rho * np.cos(theta)
y = rho * np.sin(theta)
return x, y
# Translating the contour by subtracting the center with all the points
norm = contour - [center[0], center[1]]
# Convert the points to polar co-ordinates, add the rotation, and convert it back to Cartesian co-ordinates.
coordinates = norm[:, 0, :]
xs, ys = coordinates[:, 0], coordinates[:, 1]
thetas, rhos = cart2pol(xs, ys)
thetas = np.rad2deg(thetas)
thetas = (thetas + angle) % 360
thetas = np.deg2rad(thetas)
# Convert the new polar coordinates to cartesian co-ordinates
xs, ys = pol2cart(thetas, rhos)
norm[:, 0, 0] = xs
norm[:, 0, 1] = ys
rotated = norm + [center[0], center[1]]
rotated = rotated.astype(np.int32)
return rotated
def straightenText(image, vis):
# create a new mat
mask = 0*np.ones([image.shape[0], image.shape[1], 3], dtype=np.uint8)
# invert pixel index arrangement and dilate aggressively
dilate = cv2.dilate(~image, ImageUtils.box(33, 1))
# find contours
_, contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for contour in contours:
[x, y, w, h] = cv2.boundingRect(contour)
if w > h:
# find contour angle and centers
(x, y), (w, h), angle = cv2.minAreaRect(contour)
cx, cy = getContourCenter(contour)
# fix angle returned
if w < h:
angle = 90 + angle
# fix contour angle
rotatedContour = rotateContour(contour, (cx, cy), 0-angle)
cv2.drawContours(vis, contour, -1, (0, 255, 0), 2)
cv2.drawContours(mask, rotatedContour, -1, (255, 0, 0), 2)
cv2.circle(vis, (cx, cy), 2, (0, 0, 255), 2, 8) # centroid
cv2.putText(vis, str(round(angle, 2)), (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,0,0), 2)



