I think it may just be easer to go after the data directly. No need to use selenium then. Just need to parse some of the html:
import pandas as pd
import requests
from bs4 import BeautifulSoup
url = 'https://www.clinicaltrials.gov/ct2/results/rpc/mi0yqBc9u64Wpg4BvnGkBnjPewc9S6hHSwS3Z6p3C61JJPhHc67aZwhLzdUVp'
payload = '''draw=3&columns%5B0%5D%5Bdata%5D=0&columns%5B0%5D%5Bname%5D=&columns%5B0%5D%5Bsearchable%5D=true&columns%5B0%5D%5Borderable%5D=false&columns%5B0%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B0%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B1%5D%5Bdata%5D=1&columns%5B1%5D%5Bname%5D=&columns%5B1%5D%5Bsearchable%5D=false&columns%5B1%5D%5Borderable%5D=false&columns%5B1%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B1%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B2%5D%5Bdata%5D=2&columns%5B2%5D%5Bname%5D=&columns%5B2%5D%5Bsearchable%5D=true&columns%5B2%5D%5Borderable%5D=false&columns%5B2%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B2%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B3%5D%5Bdata%5D=3&columns%5B3%5D%5Bname%5D=&columns%5B3%5D%5Bsearchable%5D=true&columns%5B3%5D%5Borderable%5D=false&columns%5B3%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B3%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B4%5D%5Bdata%5D=4&columns%5B4%5D%5Bname%5D=&columns%5B4%5D%5Bsearchable%5D=true&columns%5B4%5D%5Borderable%5D=false&columns%5B4%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B4%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B5%5D%5Bdata%5D=5&columns%5B5%5D%5Bname%5D=&columns%5B5%5D%5Bsearchable%5D=true&columns%5B5%5D%5Borderable%5D=false&columns%5B5%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B5%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B6%5D%5Bdata%5D=6&columns%5B6%5D%5Bname%5D=&columns%5B6%5D%5Bsearchable%5D=true&columns%5B6%5D%5Borderable%5D=false&columns%5B6%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B6%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B7%5D%5Bdata%5D=7&columns%5B7%5D%5Bname%5D=&columns%5B7%5D%5Bsearchable%5D=true&columns%5B7%5D%5Borderable%5D=false&columns%5B7%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B7%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B8%5D%5Bdata%5D=8&columns%5B8%5D%5Bname%5D=&columns%5B8%5D%5Bsearchable%5D=true&columns%5B8%5D%5Borderable%5D=false&columns%5B8%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B8%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B9%5D%5Bdata%5D=9&columns%5B9%5D%5Bname%5D=&columns%5B9%5D%5Bsearchable%5D=true&columns%5B9%5D%5Borderable%5D=false&columns%5B9%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B9%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B10%5D%5Bdata%5D=10&columns%5B10%5D%5Bname%5D=&columns%5B10%5D%5Bsearchable%5D=true&columns%5B10%5D%5Borderable%5D=false&columns%5B10%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B10%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B11%5D%5Bdata%5D=11&columns%5B11%5D%5Bname%5D=&columns%5B11%5D%5Bsearchable%5D=true&columns%5B11%5D%5Borderable%5D=false&columns%5B11%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B11%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B12%5D%5Bdata%5D=12&columns%5B12%5D%5Bname%5D=&columns%5B12%5D%5Bsearchable%5D=true&columns%5B12%5D%5Borderable%5D=false&columns%5B12%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B12%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B13%5D%5Bdata%5D=13&columns%5B13%5D%5Bname%5D=&columns%5B13%5D%5Bsearchable%5D=true&columns%5B13%5D%5Borderable%5D=false&columns%5B13%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B13%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B14%5D%5Bdata%5D=14&columns%5B14%5D%5Bname%5D=&columns%5B14%5D%5Bsearchable%5D=true&columns%5B14%5D%5Borderable%5D=false&columns%5B14%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B14%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B15%5D%5Bdata%5D=15&columns%5B15%5D%5Bname%5D=&columns%5B15%5D%5Bsearchable%5D=true&columns%5B15%5D%5Borderable%5D=false&columns%5B15%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B15%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B16%5D%5Bdata%5D=16&columns%5B16%5D%5Bname%5D=&columns%5B16%5D%5Bsearchable%5D=true&columns%5B16%5D%5Borderable%5D=false&columns%5B16%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B16%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B17%5D%5Bdata%5D=17&columns%5B17%5D%5Bname%5D=&columns%5B17%5D%5Bsearchable%5D=true&columns%5B17%5D%5Borderable%5D=false&columns%5B17%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B17%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B18%5D%5Bdata%5D=18&columns%5B18%5D%5Bname%5D=&columns%5B18%5D%5Bsearchable%5D=true&columns%5B18%5D%5Borderable%5D=false&columns%5B18%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B18%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B19%5D%5Bdata%5D=19&columns%5B19%5D%5Bname%5D=&columns%5B19%5D%5Bsearchable%5D=true&columns%5B19%5D%5Borderable%5D=false&columns%5B19%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B19%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B20%5D%5Bdata%5D=20&columns%5B20%5D%5Bname%5D=&columns%5B20%5D%5Bsearchable%5D=true&columns%5B20%5D%5Borderable%5D=false&columns%5B20%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B20%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B21%5D%5Bdata%5D=21&columns%5B21%5D%5Bname%5D=&columns%5B21%5D%5Bsearchable%5D=true&columns%5B21%5D%5Borderable%5D=false&columns%5B21%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B21%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B22%5D%5Bdata%5D=22&columns%5B22%5D%5Bname%5D=&columns%5B22%5D%5Bsearchable%5D=true&columns%5B22%5D%5Borderable%5D=false&columns%5B22%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B22%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B23%5D%5Bdata%5D=23&columns%5B23%5D%5Bname%5D=&columns%5B23%5D%5Bsearchable%5D=true&columns%5B23%5D%5Borderable%5D=false&columns%5B23%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B23%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B24%5D%5Bdata%5D=24&columns%5B24%5D%5Bname%5D=&columns%5B24%5D%5Bsearchable%5D=true&columns%5B24%5D%5Borderable%5D=false&columns%5B24%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B24%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B25%5D%5Bdata%5D=25&columns%5B25%5D%5Bname%5D=&columns%5B25%5D%5Bsearchable%5D=true&columns%5B25%5D%5Borderable%5D=false&columns%5B25%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B25%5D%5Bsearch%5D%5Bregex%5D=false&start=0&length=100&search%5Bvalue%5D=&search%5Bregex%5D=false'''
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36'}
jsonData = requests.post(url, data=payload, headers=headers).json()
df = pd.DataFrame(jsonData['data'])
for col in df.columns:
df[col] = df[col].apply(lambda row: BeautifulSoup(row, 'html.parser').text.strip())
**Output:
print(df.head(5).to_string())
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 NCT03689842 Recruiting Feasibility Study of Uterine Transplantation From Living Donors in Terms of Efficacy and Safety in Patients With Mayer-Rokitansky-Küster-Hauser Syndrome (MRKH) Mayer Rokitansky Kuster Hauser Syndrome Procedure: Uterine transplantation Interventional Not Applicable Hopital Foch Other Allocation: N/AIntervention Model: Single Group AssignmentMasking: None (Open Label)Primary Purpose: Treatment PregnancySafety assessment of the donor, the recipient and the fœtusPsychological assessment of the donor and the recipientGraft Rejection assessment 20 Female 18 Years to 65 Years (Adult, Older Adult) NCT03689842 2016/26 December 14, 2017 December 14, 2024 June 1, 2025 September 28, 2018 August 14, 2019 Hopital FochSuresnes, France
1 2 NCT02967822 Recruiting Molecular Genetic Study of Mayer-Rokitansky-Kuster-Hauser Syndrome Mayer Rokitansky Kuster Hauser Syndrome Genetic: Biological samples for patientsGenetic: Biological samples for healthy relatives Observational Imagine InstituteReference center for rare diseases (Rare Gynecologic Diseases) Other Observational Model: CohortTime Perspective: Prospective Number of identified nucleotidic variation(s) whose consequences can explain the phenotype of MRKH syndrome 410 All Child, Adult, Older Adult NCT02967822 IMNIS2015-06 MRKH May 2016 May 2031 May 2031 November 18, 2016 October 12, 2018 Necker - Enfants malades hospitalParis, FranceInstitut Mutualiste MontsourisParis, France
2 3 NCT03252795 Recruiting Uterus Transplantation From a Multi-organ Donor Infertility, FemaleMayer Rokitansky Kuster Hauser Syndrome Procedure: uterus transplantation Interventional Not Applicable University Hospital, Ghent Other Allocation: N/AIntervention Model: Single Group AssignmentMasking: None (Open Label)Primary Purpose: Treatment Survival of the uterus 1 year after transplantationComplications after uterus transplantationOngoing pregnancy rateTake home baby rate 20 Female 18 Years to 38 Years (Adult) NCT03252795 EC/2016/0731 November 3, 2016 December 2021 December 2023 August 17, 2017 November 13, 2019 Ghent University Hospital - Women's ClinicGhent, Belgium
3 4 NCT03188640 Completed Bariatric Surgery, Hormones, and Quality of Life ObesityHormone DisturbanceQuality of LifeHyperandrogenism Procedure: Laparoscopic gastric-bypass surgery Interventional Not Applicable Linkoeping University Other Allocation: N/AIntervention Model: Single Group AssignmentMasking: None (Open Label)Primary Purpose: Treatment Sex-hormone levelsFemale sexual functionHormone-related quality of life(and 2 more...) 68 Female 18 Years to 50 Years (Adult) NCT03188640 2012/392-31 OBLIV March 1, 2014 October 31, 2016 October 31, 2016 June 15, 2017 June 16, 2017
4 5 NCT04912648 Not yet recruiting FEmale Metabolic Risk and Androgens: an Irish Longitudinal (FEMAIL) Study HyperandrogenismMetabolic DiseaseSex Hormones Adverse Reaction Other: Longitudinal follow up Observational Royal College of Surgeons, Ireland Other Observational Model: CohortTime Perspective: Prospective Correlation of sex hormone profiles and the metabolome of women across the lifespan with risk of metabolic dysfunction, cardiovascular disease and quality of life.Development of risk prediction models for development of diabetes in womenEstablishment of the longitudinal FEMAIL study database 500 Female 18 Years and older (Adult, Older Adult) NCT04912648 20/49 FEMAIL September 1, 2021 September 1, 2025 August 31, 2031 June 3, 2021 June 3, 2021 Royal College of Surgeons in IrelandDublin, Ireland
[58 rows x 26 columns]

read_html()works fine and df is displayed as table looks like (selenium4) - Could you provide full example and versions of modules? Would be great to be able to reproduce.