There are already hashes that do essentially this, except perhaps not with the RSA algorithm in particular. They're called cryptographic hashes, and their salient point is that they're cryptographically secure - meaning that the same strength and security-oriented thought that goes into public key cryptographic functions has gone into them as well.
The only difference is, they've been designed from the ground-up as hashes, so they also meet the individual requirements of hash functions, which can be considered as additional strong points that cryptographic functions need not have.
Moreover, there are factors which are completely at odds between the two, for instance, you want hash functions to be as fast as possible without compromising security whereas being slow is oftentimes seen as a feature of cryptographic functions as it limits brute force attacks considerably.
SHA-512 is a great cryptographic hash and probably worthy of your attention. Whirlpool, Tiger, and RipeMD are also excellent choices. You can't go wrong with any of these.
One more thing: if you actually want it to be slow, then you definitely DON'T want a hash function and are going about this completely wrong. If, as I'm assuming, what you want is a very, very secure hash function, then like I said, there are numerous options out there better suited than your example, while being just as or even more cryptographically secure.
BTW, I'm not absolutely convinced that there is no weakness with your mixing algorithm. While the output of each RSA block is intended to already be uniform with high avalanching, etc, etc, etc, I remain concerned that this could pose a problem for chosen plaintext or comparative analysis of similar messages.