0

I have two dataframes that have 300 columns and 1000 rows each. They have the same column names. The values are of mixed datatypes like Struct/List/Timestamp/String/etc. I am trying to compare the column values for each row, I notice that the query is running for a long time. Is there a way to optimize this?

def compareDatasets(ds1: Dataset[Row], ds2: Dataset[Row]): Dataset[Row] = {
      
    val attributeSet = ds1.columns
    val distinctAsins = ds1.select("item_id").distinct()
      
    val partitionedDs1 = ds1.repartition($"item_id")
    partitionedDs1.cache()
    
    val partitionedDs2 = ds2.repartition($"item_id")
    partitionedDs2.cache()
    
    distinctAsins.collect().foreach { row =>
      val asin = row.get(0)
      
      val ds1Rows = partitionedDs1.filter(col("item_id") === asin)
      val cachedDs1Rows = ds1Rows.cache()
      
      val cipRows = partitionedDs2.filter(col("item_id") === asin)
      val cachedDs2Rows = cipRows.cache()
        attributeSet.foreach { attr => 
        
          val areColumnsEqual: Boolean = cachedDs1Rows.filter(cachedDs1Rows(attr) === cachedDs2Rows(attr)).count() > 0 //<------ trying to optimize this
          println("parsing item_id: " + asin + " attribute: " + attr + " areColumnsEqual: "  + areColumnsEqual)
            
        }
        cachedDs2Rows.unpersist()
        cachedDs1Rows.unpersist()
      }
    partitionedDs1.unpersist()
    partitionedDs2.unpersist()
      
    ds1  
}
1
  • You can use the except method, something like this ds1.except(ds2) Commented Apr 10, 2024 at 10:09

1 Answer 1

1

You can use Dataframe subtract.

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.subtract.html

from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.appName("example").getOrCreate()

df1 = spark.createDataFrame([Row(a=1, b=2), Row(a=2, b=3), Row(a=3, b=4)])
df2 = spark.createDataFrame([Row(a=2, b=3), Row(a=4, b=5)])

df_subtract12 = df1.subtract(df2)
df_subtract21 = df2.subtract(df1)


df_subtract12.show()
df_subtract21.show()

Output :

+---+---+
|  a|  b|
+---+---+
|  3|  4|
|  1|  2|
+---+---+

+---+---+
|  a|  b|
+---+---+
|  4|  5|
+---+---+
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.