This is based on @Safak's answer.
The best way to understand the axes in pandas/numpy is to create a 3d array and check the result of the sum function along the 3 different axes.
a = np.ones((3,5,7))
a will be:
array([[[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.]],
[[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.]],
[[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1.]]])
Now check out the sum of elements of the array along each of the axes:
x0 = np.sum(a,axis=0)
x1 = np.sum(a,axis=1)
x2 = np.sum(a,axis=2)
will give you the following results:
x0 :
array([[3., 3., 3., 3., 3., 3., 3.],
[3., 3., 3., 3., 3., 3., 3.],
[3., 3., 3., 3., 3., 3., 3.],
[3., 3., 3., 3., 3., 3., 3.],
[3., 3., 3., 3., 3., 3., 3.]])
x1 :
array([[5., 5., 5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5., 5., 5.]])
x2 :
array([[7., 7., 7., 7., 7.],
[7., 7., 7., 7., 7.],
[7., 7., 7., 7., 7.]])