The recursive formula for computing the number of ways of choosing k items out of a set of n items, denoted C(n,k), is:
1 if K = 0
C(n,k) = { 0 if n<k
c(n-1,k-1)+c(n-1,k) otherwise
I’m trying to write a recursive function C that computes C(n,k) using this recursive formula. The code I have written should work according to myself but it doesn’t give me the correct answers.
This is my code:
def combinations(n,k):
# base case
if k ==0:
return 1
elif n<k:
return 0
# recursive case
else:
return combinations(n-1,k-1)+ combinations(n-1,k)
The answers should look like this:
>>> c(2, 1)
0
>>> c(1, 2)
2
>>> c(2, 5)
10
but I get other numbers... don’t see where the problem is in my code.
c(2, 5)means thatn=2andk=5(as per definition ofcat the top). Son<kand as such the result should be0. Are you sure that the arguments of your example test case has the correct order?C(10,5) = (10*9*8*7*6)/(5*4*3*2*1)nwithout integer overflows.