I am trying to use a function-like macro to generate an object-like macro name (generically, a symbol). The following will not work because __func__ (C99 6.4.2.2-1) puts quotes around the function name.
#define MAKE_AN_IDENTIFIER(x) __func__##__##x
The desired result of calling MAKE_AN_IDENTIFIER(NULL_POINTER_PASSED) would be MyFunctionName__NULL_POINTER_PASSED. There may be other reasons this would not work (such as __func__ being taken literally and not interpreted, but I could fix that) but my question is what will provide a predefined macro like __func__ except without the quotes? I believe this is not possible within the C99 standard so valid answers could be references to other preprocessors.
Presently I have simply created my own object-like macro and redefined it manually before each function to be the function name. Obviously this is a poor and probably unacceptable practice. I am aware that I could take an existing cpp program or library and modify it to provide this functionality. I am hoping there is either a commonly used cpp replacement which provides this or a preprocessor library (prefer Python) which is designed for extensibility so as to allow me to 'configure' it to create the macro I need.
I wrote the above to try to provide a concise and well defined question but it is certainly the Y referred to by @Ruud. The X is...
I am trying to manage unique values for reporting errors in an embedded system. The values will be passed as a parameter to a(some) particular function(s). I have already written a Python program using pycparser to parse my code and identify all symbols being passed to the function(s) of interest. It generates a .h file of #defines maintaining the values of previously existing entries, commenting out removed entries (to avoid reusing the value and also allow for reintroduction with the same value), assigning new unique numbers for new identifiers, reporting malformed identifiers, and also reporting multiple use of any given identifier. This means that I can simply write:
void MyFunc(int * p)
{
if (p == NULL)
{
myErrorFunc(MYFUNC_NULL_POINTER_PASSED);
return;
}
// do something actually interesting here
}
and the Python program will create the #define MYFUNC_NULL_POINTER_PASSED 7 (or whatever next available number) for me with all the listed considerations. I have also written a set of macros that further simplify the above to:
#define FUNC MYFUNC
void MyFunc(int * p)
{
RETURN_ASSERT_NOT_NULL(p);
// do something actually interesting here
}
assuming I provide the #define FUNC. I want to use the function name since that will be constant throughout many changes (as opposed to LINE) and will be much easier for someone to transfer the value from the old generated #define to the new generated #define when the function itself is renamed. Honestly, I think the only reason I am trying to 'solve' this 'issue' is because I have to work in C rather than C++. At work we are writing fairly object oriented C and so there is a lot of NULL pointer checking and IsInitialized checking. I have two line functions that turn into 30 because of all these basic checks (these macros reduce those lines by a factor of five). While I do enjoy the challenge of crazy macro development, I much prefer to avoid them. That said, I dislike repeating myself and hiding the functional code in a pile of error checking even more than I dislike crazy macros.
If you prefer to take a stab at this issue, have at.
__func__is not actually part of the preprocessor, it should be treated like a real variable (a character array to be precise).__func__. If they had not then we could easily#define QUOTE(x) #x,#define EXPAND(x) xand#define FUNC() QUOTE(EXPAND(__func__))and end up with both unquoted and quoted function name options.