1

I have a normally distributed variable x (like product demand), an index id_1 (like product number) and a second index id_2 (like product group). My goal is to estimate the mean and the standard deviations for x hierarchically (all > product group > product). That's my data:

import numpy as np
import pymc3 as pm
import arviz as az

# data
my_step_1 = 0.4
my_step_2 = 4.1
sd_step_1 = 0.1
sd_step_2 = 0.2
my = 10
sd = .1
grp_n = 8
grps_1 = 5
grps_2 = 4

x = np.round(np.concatenate([np.random.normal(my + i * my_step_1 + j * my_step_2, \
                      sd + i * sd_step_1 + j * sd_step_2, grp_n) \
    for i in range(grps_1) for j in range(grps_2)]), 1) # demand
id_1 = np.repeat(np.arange(grps_1 * grps_2), grp_n) # group, product number
id_2 = np.tile(np.repeat(np.arange(grps_2), grp_n), grps_1) # super-group, product group
shape_1 = len(np.unique(id_1))
shape_2 = len(np.unique(id_2))

I've managed a single hierarchy:

with pm.Model() as model_h1:
    #
    mu_mu_hyper = pm.Normal('mu_mu_hyper', mu = 0, sd = 10)
    mu_sd_hyper = pm.HalfNormal('mu_sd_hyper', 10)
    sd_hyper = pm.HalfNormal('sd_hyper', 10)
    #
    mu = pm.Normal('mu', mu = mu_mu_hyper, sd = mu_sd_hyper, shape = shape_1)
    sd = pm.HalfNormal('sd', sd = sd_hyper, shape = shape_1)

    y = pm.Normal('y', mu = mu[id_1], sd = sd[id_1], observed = x)

    trace_h1 = pm.sample(1000)

#az.plot_forest(trace_h1, var_names=['mu', 'sd'], combined = True)

But how can I code 2 hierarchies?

# 2 hierarchies .. doesn't work
with pm.Model() as model_h2:  
    #
    mu_mu_hyper2 = pm.Normal('mu_mu_hyper2', mu = 0, sd = 10)
    mu_sd_hyper2 = pm.HalfNormal('mu_sd_hyper2', sd = 10)
    sd_mu_sd_hyper2 = pm.HalfNormal('sd_mu_sd_hyper2', sd = 10)
    sd_hyper2 = pm.HalfNormal('sd_hyper2', sd = 10)    
    #
    mu_mu_hyper1 = pm.Normal('mu_hyper1', mu = mu_mu_hyper2, sd = mu_sd_hyper2, shape = shape_2)
    mu_sd_hyper1 = pm.HalfNormal('mu_sd_hyper1', sd = sd_mu_sd_hyper2, shape = shape_2)
    sd_hyper1 = pm.HalfNormal('sd_hyper1', sd = sd_hyper2, shape = shape_2)
    #sd_hyper1 = pm.HalfNormal('sd_hyper1', sd = sd_hyper2[id_2], shape = shape_2)??
    #
    mu = pm.Normal('mu', mu = mu_mu_hyper1, sd = mu_sd_hyper1, shape = shape_1)
    sd = pm.HalfNormal('sd', sd = sd_hyper1, shape = shape_1)
    
   y = pm.Normal('y', mu = mu[id_1], sd = sd[id_1], observed = x)

    trace_h2 = pm.sample(1000)
2
  • Any restrictions as far as the libraries are concerned? Commented May 22, 2021 at 12:36
  • no, even if I have to migrate, it gets me closer Commented May 22, 2021 at 13:57

1 Answer 1

1

You could try looping through product groups and use the mean, std for a group as constraints for the products belonging to this particular group.

# sample product group to product mapping
group_product_mapping = {0: [1, 2, 3], 1: [4, 5, 6]}
total_groups = len(group_product_mapping.keys())
with pm.model() as model_h:
    mu_all = pm.Normal('mu_all', 0, 10)
    sd_all = pm.HalfNormal('sd_all', 10)
    sd_mu_group = pm.HalfNormal('sd_mu_group', 10)
    
    # group parameters constrained to mu, sd from all
    mu_group = pm.Normal('mu_group', mu_all, sd_all, shape=total_groups) 
    sd_group = pm.HalfNormal('sd_group', sd_mu_group, shape=total_groups)
    
    mu_products = dict()
    # iterate through groups and constrain product parameters to the product group they belong to
    for idx, group in enumerate(group_product_mapping.keys()):
        mu_products[group] = pm.Normal(f'mu_products_{group}', mu_group[idx], sd_group[idx], shape=len(group_product_mapping[group]))
        sd_produtcs[group] = pm.HalfNormal(f'sd_mu_products_{group}', 10)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.